
1. Introduction
The prediction of tropical cyclones (TCs) has been steadily improved over the past two decades (DeMaria 
et al., 2014; Simon et al., 2018). Increased computational resources have permitted high-resolution simulations 
to better resolve convective-scale dynamical processes. Improved representation of microphysical and bound-
ary layer processes and refined physical parameterizations in numerical models have also advanced the perfor-
mance of hurricane forecasting models (Lewis et al., 2020; Mehra et al., 2018; Wang et al., 2018). Despite these 
advances, significant room for the improvement in TC intensity forecasts remains, especially for rapid intensi-
fication events. Moreover, the role of radiative processes in the intensity forecasts has received less attention in 
operational models, despite a growing number of studies that have demonstrated its importance on TC genesis 
and intensification (Carstens & Wing, 2020; Muller & Romps, 2018; Smith et al., 2020; Wing et al., 2016; Wu, 
Soden, Miyamoto et al., 2021; Wu, Soden, Nolen 2021; Zhang, Sieron, et al., 2021; Zhang, Soden, et al., 2021).

Radiation is a critical modulator for atmospheric energy balance and is essential for determining the strength of 
the global circulation (Fermepin & Bony, 2014; Randall et al., 1989; Sherwood et al., 1994). In addition to their 
known importance to climate, there is a growing recognition that interactions between clouds and radiation also 
play a critical role in regulating the intensity of individual high-impact weather systems (Bretherton et al., 2005; 
Muller & Held, 2012; Wing & Emanuel, 2014; Wing et al., 2016). By enhancing the spatial contrast in atmos-
pheric longwave radiative heating, cloud differences induce a secondary overturning circulation which further 
intensifies the cloud and precipitation fields.

Recent modeling studies have demonstrated the importance of radiative processes on TC development, particu-
larly at the early stages of development where radiative heating makes up a larger fraction of the total diabatic 
heating within a storm. In model simulations, suppressing radiative interactions acts to slow or inhibit tropi-
cal cyclogenesis, highlighting the potential importance of radiative heating on TC development (Bretherton 
et al., 2005; Bu et al., 2014; Carstens & Wing, 2020; Fovell et al., 2016; Melhauser & Zhang, 2014; Muller & 
Romps, 2018; Smith et al., 2020; Wing et al., 2016; Zhang, Soden, et al., 2021; Zhang, Sieron, et al., 2021). 
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Plain Language Summary Satellite measurements observed larger radiation heating near the 
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Also, the modification in radiative forcing in full-physics numerical simulations influences the evolution of TC 
wind fields (Fovell et al., 2016; Melhauser & Zhang, 2014). Modeling studies have also found that the spatial 
contrast in radiative heating between the TC center and large-scale environment induces a secondary circu-
lation that provides an upgradient transport of moist static energy and accelerates TC development (Carstens 
& Wing, 2020; Smith et al., 2020; Wu, Soden, Miyamoto et al., 2021; Wu, Soden, Nolen 2021). These find-
ings suggest that the accuracy of TC intensity forecasts produced by numerical models may also depend, in 
part, on the accurate simulation of the spatial distribution of radiative heating in the TC area relative to its 
surroundings.

Imposing external forcings on TCs in numerical simulations can also enhance the predictability of TC intensity. 
Significant large-scale environmental influences such as strong vertical wind shear can elevate the predictability, 
increasing the accuracy of the forecasted TC evolution (Finocchio & Majumdar, 2017; Zhang & Tao, 2013). 
Without large-scale environmental influences, the intensity forecasting error in numerical simulations will grow 
faster, because the effectiveness of the intrinsic predictability associated TC internal dynamics sharply dimin-
ished within 3 days (Hakim, 2013; Judt & Chen, 2016) Therefore, correctly reproducing the observed radiative 
heating, which is an important large-scale forcing for weaker TCs (e.g., Wing et al., 2016), could enhance the 
predictability of TC intensity by lowering the growth rate of errors.

This study aims to expand our understanding of the relationship between radiative heating and TC evolution to a 
more practical approach. We compare the observed spatial distribution of radiative heating in Hurricane Weather 
and Research Forecasting (HWRF) model simulations with that from satellite observations. The performance of 
radiative heating forecasts in HWRF is further examined based on different forecast skills of TC intensity. We use 
the NASA Clouds and the Earth's Radiant Energy System (CERES) measurements to quantify the relationship 
between observed atmospheric longwave radiative heating and subsequent TC intensity change. It is shown that, 
in both observations and HWRF simulations, storms with large radiative heating tend to show a larger subsequent 
increase in TC intensity. Simulated storms with a spatial distribution of longwave heating similar to that observed 
tend to have a better prediction of the subsequent 24-hr intensification change.

2. Data and Methods
2.1. CERES Measurements

The CERES instruments mounted on the Terra and Aqua satellites provide a radiative energy budget at the top 
of the atmosphere across the globe (Fueglistaler, 2019; Loeb et al., 2020; Wielicki et al., 1996). In this study, we 
use the “synoptic TOA and surface fluxes and clouds” data set (SYN1deg-1Hour; Doelling et al., 2013), which 
provides radiative fluxes at the top-of-atmosphere and the surface, with a horizontal latitude/longitude grid spac-
ing of one degree and a time interval of 1 hour. The radiative fluxes in SYN1deg-1Hour were retrieved using 
the CERES measurements in combination with longwave observations and cloud properties from geostationary 
satellites. In this study, we use CERES radiative flux measurements in the 2018 North Atlantic and eastern North 
Pacific hurricane seasons, co-locating these data in space/time with simulated TCs and then comparing them with 
HWRF radiative flux forecasts.

2.2. TC Intensity and Location

International Best Track Archive for Climate Stewardship (IBTrACS) offers 6-hourly maximum wind speed and 
location of historical TCs (Knapp et al., 2010). The resolution of the intensity is 5 kt and location is rounded 
to the nearest tenth of a degree. IBTrACS is used to locate TCs in CERES measurements and to identify TC 
intensity at the analysis time and 24 hr later. The 24-hr intensity change in this study is defined as the difference 
between the current intensity and the intensity 24 hr later. The reason for choosing 24-hr interval is motivated by 
the response time for the overturning circulation, which takes approximately one day to reach the TC core from 
the environment. If TC intensity increases at least by 5 kt, it is classified as an intensifying TC. Conversely, if TC 
intensity decreases by at least 5 kts over the subsequent 24 hr, it is classified as a weakening TC. To minimize the 
influence of current TC intensity on the signal of TC intensification (Wu & Soden, 2017; Wu, Soden, Miyamoto, 
et al., 2021; Wu, Soden, Nolen, 2021; Wu et al., 2020), we stratify these TCs based on their TC intensity at 
the analysis time: tropical depression (TD; <34 kt), tropical storm (TS; 34–63 kt), Category 1–2 TC (Cat 1–2; 
64–112 kt), and Category 3–5 TC (Cat 3–5; >112 kt).
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2.3. HWRF Simulations

The HWRF (Atlas et al., 2015; Bao et al., 2012; Gopalakrishnan et al., 2011, 2012, 2013; Mehra et al., 2018; 
Tallapragada et al., 2014) is one of the top-performing operational hurricane prediction models (Lewis et al., 2020). 
HWRF was developed for operational use at the National Oceanic and Atmospheric Administration in 2007 with 
support from the Hurricane Forecast Improvement Project (HFIP; Gall et al., 2013; Gopalakrishnan et al., 2021). 
Storm-following nested domains are a premier component of HWRF that have improved forecasts, in particular, 
intensity forecasts, dramatically over the last decade (Alaka et al., 2022; Gopalakrishnan et al., 2021). HWRF is 
configured with two telescopic, nested domains (grid spacings of 4.5 and 1.5 km, respectively) that follow a TC 
to produce high-resolution forecasts within a larger outermost domain that captures the synoptic-scale environ-
ment at 13.5-km resolution. HWRF is configured with an advanced suite of physics parameterizations, includ-
ing the Ferrier-Aligo microphysics scheme (Rogers et al., 2001), the Scale-Aware Simplified Arakawa-Schubert 
(SASAS) cumulus parameterization scheme (Arakawa & Schubert, 1974; Pan & Wu, 1995), and the RRTMG 
longwave and shortwave radiation schemes (Iacono et al., 2008; Mlawer et al., 1997). For more information about 
the HWRF system, readers are referred to the documentation (Biswas et al., 2018). We use the experimental 
Basin-scale HWRF (HWRF-B; Alaka et al., 2017, 2020; Zhang, Gopalakrishnan, et al., 2016; Zhang, Minamide, 
& Clothiaux, 2016) developed under the HFIP. HWRF-B has shown forecast improvement over the operational 
HWRF (Alaka et al., 2022). The HWRF-B configuration is nearly identical to that in the operational HWRF, 
except that HWRF-B uses storm-following nests for several TCs per model integration and has an outermost 
domain that does not move. Conversely, the operational HWRF has storm-following nested domains for only one 
TC per model integration and its outermost domain is relocated for each forecast.

In this study, we evaluate the retrospective HWRF-B simulations from 2018, which includes a total of 15 TCs 
from the North Atlantic and 22 TCs from eastern North Pacific (Table S1 in Supporting Information S1). Each 
simulation cycle had a length of 126 hr and simulations were produced every 6 hours. In total, 499 HWRF-B 
simulation cycles from 25 May to 31 October 2018 were utilized in this study. We only adopt the radiative heating 
fields at the 6-hr lead time in every simulation cycle to minimize the possible influence of model error at longer 
forecasting lead times. HWRF-B output was interpolated to one-degree resolution to match CERES data. We 
evaluate the current TC intensity and 24-hr intensity change in HWRF-B at 6-hr lead times and corresponding 
IBTrACS metrics (Figure S1 in Supporting Information S1). The mean intensity error at 6-hr lead time in the 
HWRF-B simulations is −1.17 kt with the root-mean-square error of 9.21 kt. The mean error of 24-hr intensity 
difference between 6-hr and 30-hr lead time is ∼0.4 kt with the root mean square error of 13.96 kt.

2.4. Longwave Radiative Fluxes

Previous modeling studies have demonstrated the importance of radiative fluxes to TC intensification. We only 
consider the longwave fluxes here, as the atmosphere is relatively transparent to shortwave radiation. Following 
Wu, Soden, and Nolan (2021) and Wu, Soden, Miyamoto, et al. (2021), we compute the vertical convergence of 
atmospheric longwave radiation (ALWC), which is:

ALWC =
(

−LWup

)

TOA
−
(

LWdown − LWup

)

SFC
 (1)

𝐴𝐴 LWup  and 𝐴𝐴 LWdown  are upward and downward longwave radiation, with the value of 𝐴𝐴 LWup  and 𝐴𝐴 LWdown  being 
positive in the equation. The subscripts of TOA and SFC represent that variable is at the top-of-atmosphere and 
surface, respectively.

We also define ΔALWC as the difference in ALWC between HWRF simulations and CERES measurements. 
ΔALWC is defined as:

ΔALWC = ALWCHWRF − ALWCCERES (2)

The subscripts HWRF and CERES represent the data sources.

3. Results
3.1. Signals of TC Intensification in Satellite Measurements and HWRF

Composites of ALWC from CERES measurements are created to examine the relationship between ALWC and 
TC intensification. ALWC is composited separately for intensifying and weakening TCs and stratified into three 
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intensity categories based on its initial intensity classification. For both intensifying and weakening TCs, ALWC 
in the TC area (which tend to be covered by convective and stratiform clouds) is of ∼60–100 W/m 2 higher than 
that in the environment (Figure 1a). The reason for stronger ALWC in the TC area is mainly due to the thick layer 
of high clouds in the TC, which substantially reduces the energy loss to space from outgoing longwave radiation. 
The difference in ALWC between intensifying and weakening TCs (Figure 1a) is computed to examine how the 
distribution of ALWC affects TC intensification. For both TD/TS and category 1-2 storms, intensifying TCs 
have stronger ALWC of about 9 W/m 2 within 5-degree longitude/latitude and weaker ALWC in its environment, 
compared to weakening TCs. The 95% statistical significance level is reached for the area with the difference in 
ALWC greater than 10 W/m 2. For category 3–5, the difference between the TC area and its environment is not 
as clear as other intensity categories, implying that longwave radiative heating may be less effective to modulate 
strong TCs. This is to be expected given the greater contributions of latent heat release to the diabatic heating 
rates in strong TCs. The greater ALWC within the TC area in intensifying TCs can induce a large-scale transverse 
circulation, providing an upgradient transport of energy into TCs and accelerating the intensification processes 
(Ruppert et  al.,  2020). This greater ALWC signal in intensifying TCs is in agreement with recent modeling 
studies, which suggested that stronger cloud radiative heating in the precipitating area is a key to facilitate the 
development of TCs (Bretherton et al., 2005; Bu et al., 2014; Carstens & Wing, 2020; Muller & Romps, 2018; 
Smith et al., 2020; Wing et al., 2016; Wu, Soden, Miyamoto et al., 2021; Wu, Soden, Nolen 2021).

We repeat the same analyses for HWRF simulations, creating composites of ALWC, to examine the ability of 
the model to reproduce the observed radiative fluxes. The distribution of ALWC is similar to that in CERES 
measurements: ALWC in the TC area is ∼60 W/m 2 higher than that in its environment (Figure 1b). The average 
magnitude of ALWC in HWRF is ∼20 W/m 2 less than that in CERES measurements, with a slightly greater 
difference around the TC center. We also subtract composites of ALWC for weakening TCs from that for intensi-
fying TCs to examine whether HWRF captures the observed relationship between ALWC and TC intensification. 
The signal of TC intensification in HWRF is consistent with that in CERES measurements: the TC area has 
positive differences, while the environment demonstrates a negative to small positive differences. In HWRF, an 
eye feature was clearly visible in hurricane composites for both weakening and intensifying cases even after the 
model data had been degraded to 1°, evidence that simulated eyes in HWRF are generally larger than observed 
(e.g., Otkin et al., 2017). Overall, HWRF successfully captures the pattern of ALWC shown in CERES measure-
ments, though the magnitude of ALWC in HWRF is on average about 20 W/m 2 less than that observed.

Figure 1. Storm-centered composites of ALWC from (a) CERES measurements and (b) HWRF simulations for TCs that weaken in the subsequent 24-hr period (left 
column), TCs that intensify in the subsequent 24-hr period (middle column), and intensifying TCs minus weakeningTCs (right column) in W/m 2. For CERES and 
HWRF, three rows from top to bottom are for different intensity categories: TD&TS, Cat 1–2, and Cat 3–5. For the left and middle columns, the number of cases in 
each composite is printed above the panel. Shadings are ALWC in W/m 2. The x- and y-axis are latitude and longitude in degrees relative to the TC center.
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We further examine how the rate of TC intensification is related to the distribution of ALWC in both HWRF 
simulations and CERES measurements. To do this, the ALWC composites are created for three groups based on 
the 24-hr intensity change: 0–15 kt, 15–30 kt, and >30 kt (Figure 2). For reference, we also compute mean ALWC 
for all TCs with the intensity below 100 kt, as intensification in strong TCs is typically less affected by radiative 
heating than in weak TCs (see Figure 1). For both HWRF simulations and CERES measurements, the composite 
for all TCs demonstrates a similar ALWC, with greater ALWC in the TC area and lower values of ALWC in the 
environment. In terms of the relationship of ALWC with intensification rates, ALWC within the TC area becomes 
stronger as the intensification rate increases. This relationship is consistent between HWRF simulations and 
CERES measurements. It is worth noting that ALWC at the initial time can potentially be used to predict rapid 
intensification (change of 30+ kt in 24 hr; RI) in the HWRF forecast. For example, the area covered by ALWC 
greater than 40 Wm −2 is certainly larger for RI rate (Figure 2h) than for weaker intensification rates (Figures 2f 
and 2g). Interestingly, moderate intensification rates (15–30 kt per 24 hr) have a maximum ALWC greater than 40 
Wm −2 (Figure 2g), but over a smaller area than RI rates. The results suggest that TCs with faster intensification 
rates tend to have a greater ALWC within the precipitating area as well as a stronger ALWC gradient between 
TC area and its environment. HWRF simulations reasonably replicate this observed relationship found in CERES 
measurements.

3.2. Impacts of Radiation on the Prediction Skills of TC Intensification

As HWRF has demonstrated its ability to reproduce the signal of TC intensification in ALWC, we extend our 
analysis to examine how the prediction skill of TC intensification is related to the model's performance in captur-
ing the observed radiative fluxes. As radiative heating is demonstrated to be not as influential for intensity change 
in strong TCs (see Figure 1), the following analysis excludes Cat 3–5 TCs. We create the composites of ALWC 
for HWRF simulations that correctly predict the sign of 24-hr intensity change and for those that fail to (Figure 3). 
In the group associated with the correct prediction, the difference in ALWC composites between intensifying and 
weakening TCs is similar to that in CERES measurements: intensifying TCs have stronger ALWC within the 
TC core and weaker ALWC in the environment (Figures 3a and 3b). Conversely, the group associated with the 
incorrect prediction (Figures 3c and 3d) demonstrates the opposite pattern to that in CERES measurements. That 
is, the simulated ALWC within the convective area for TCs that incorrectly intensify is weaker compared to that 
for TCs that incorrectly weaken in the following 24 hr. The ALWC signal of TC intensification from the correct 

Figure 2. Storm-centered composites of ALWC from CERES measurements (top row) and HWRF simulations (bottom row). The left column, (a, e), depicts the mean 
ALWC for all TCs with a maximum intensity below 100 kt. The three rightmost columns show the difference in ALWC relative to (a, e) for three bins of 24-hr TC 
intensity change: (b, f) 0–15 kt, (c, g) 15–30 kt, and (d, h) >30 kt. The x-axis and y-axis are degrees in latitude and longitude relative to the TC center.
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predictions agrees with what the observational metrics demonstrated and previous modeling studies suggested 
(Carstens & Wing, 2020; Muller & Romps, 2018; Smith et al., 2020; Wu, Soden, Miyamoto et al., 2021; Wu, 
Soden, Nolen 2021).

To quantitatively estimate the effect of the simulated radiative heating on the prediction skill of TC intensifica-
tion, we examine how the performance of the intensity prediction (𝐴𝐴 Δ𝑉𝑉𝑡𝑡) is related to the difference in ALWC 
between HWRF and CERES (𝐴𝐴 ΔALWC). We hypothesize that greater 𝐴𝐴 ΔALWC gradient between TC and envi-
ronment corresponds to greater 𝐴𝐴 Δ𝑉𝑉𝑡𝑡  , as a strong ALWC gradient implies faster intensification or slower weaken-
ing. Therefore, the azimuthal average of 𝐴𝐴 ΔALWC , which is defined as the difference in ALWC between HWRF 
and CERES, is calculated for every storm from their TC center to the radial distance of 1,000 km. We separate 
the HWRF simulations into different groups based on 𝐴𝐴 Δ𝑉𝑉𝑡𝑡  , the deviation of simulated 24-hr intensity change 
from that in the IBTrACS.

ΔVt = (V24h − Vcurrent)HWRF − (V24h − Vcurrent)BEST (3)

The subscripts HWRF and BEST represent TC intensity associated with HWRF simulations and IBTrACS, 
respectively. 𝐴𝐴 𝐴𝐴current  is current TC intensity and 𝐴𝐴 𝐴𝐴24ℎ  is TC intensity 24  hr from the current time. 𝐴𝐴 ΔALWC 
composites are created for the three groups based on 𝐴𝐴 Δ𝑉𝑉𝑡𝑡  : 0–10 kt, 10–20 kt, and 20–30 kt. Smaller 𝐴𝐴 Δ𝑉𝑉𝑡𝑡  , means 
better prediction skill. Similar to previous analysis, we also calculate mean 𝐴𝐴 ΔALWC  for all TCs with the intensity 
below 100 kt for the reference.

Figure 3. Storm-centered composites of the difference in the HWRF-simulated ALWC between TCs that will intensify 
and weaken during the following 24 hr. The left column is Intensity change events that are correctly predicted, and the 
right column is intensity change events that are incorrectly predicted. The two rows from top to bottom are for different 
6-hr HWRF forecast intensity categories: (a, c) TD and TS, (b, d) Cat 1–2. The x-axis and y-axis are degrees in latitude and 
longitude relative to the TC center.
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Considering positive 𝐴𝐴 Δ𝑉𝑉𝑡𝑡  , in which HWRF storms intensify faster or weaken slower than those in BEST, 
𝐴𝐴 ΔALWC  within 200 km of the TC center becomes greater as 𝐴𝐴 Δ𝑉𝑉𝑡𝑡  increases, suggesting that HWRF simulations 

with higher-than-expected ALWC tend to overestimate TC intensification rates (Figure 4a). ALWC error dips at 
around 200 km. This dip may imply the occurrence of a moat region between the TC inner core and rainbands in 
HWRF simulations, as less cloud production leads to smaller ALWC. The result is consistent with our previous 
analysis that greater inner-core ALWC can accelerate TC intensification. Nevertheless, among all the groups of 
negative 𝐴𝐴 Δ𝑉𝑉𝑡𝑡  , in which storms in HWRF weakens faster or intensify slower than BEST, the group with most 
negative 𝐴𝐴 Δ𝑉𝑉𝑡𝑡  also have greater 𝐴𝐴 ΔALWC  within 200 km, suggesting that storms with overestimated weakening 
rates or underestimated intensification rates in HWRF prediction often have stronger simulated inner-core ALWC 
(Figure 4b). The main reason for the larger 𝐴𝐴 ΔALWC in the faster-weakening/slower-intensifying group (i.e., 
simulated storms project slower intensification rates than observation) could be due to their stronger simulated 
initial TC intensity compared with observations. As we expect that overestimated intensification rates lead to 
larger 𝐴𝐴 ΔALWC  , the simulated storms with a greater initial intensity than corresponding observations are also 
likely to produce higher 𝐴𝐴 ΔALWC . To better investigate whether a stronger initial intensity in HWRF is the reason 
for the larger 𝐴𝐴 ΔALWC  , we perform a similar analysis but only include simulations with initial intensity error 
of less than 5 kts. However, the larger 𝐴𝐴 ΔALWC still occurs in the faster-weakening/slower-intensifying group, 
implying that the large negative 𝐴𝐴 Δ𝑉𝑉𝑡𝑡  might involve other factors in addition to just radiation, while better captur-
ing the initial ALWC in HWRF can produce a better intensity forecast.

We also compute the absolute value of 𝐴𝐴 ΔALWC  to quantify the model's performance to replicate radiative fluxes 
and compare between TCs with different 𝐴𝐴 Δ𝑉𝑉𝑡𝑡  . The mean absolute value of 𝐴𝐴 ΔALWC  within 500 km of the TC 
center is calculated for four different magnitudes of the absolute value of 𝐴𝐴 Δ𝑉𝑉𝑡𝑡  , which are 0–10, 10–20, 20–30, 
30–40 kt. Progressing from small to large absolute values of 𝐴𝐴 Δ𝑉𝑉𝑡𝑡  , the magnitude of absolute 𝐴𝐴 ΔALWC grows 
monotonically from 32.5 to ∼42.5 W/m^2 (Figure S2 in Supporting Information S1). The model's failure to 
capture the timing of RI or to falsely predict RI could be driving a larger ALWC error for a larger error in inten-
sification rates in the group with 𝐴𝐴 Δ𝑉𝑉𝑡𝑡  greater than 30 kt. The results demonstrate that the accuracy of predicting 
TC intensification in HWRF is positively correlated with the performance of reproducing ALWC. In addition, the 
chances of HWRF failing to predict the sign of intensity change also increases along with the increase of absolute 

𝐴𝐴 ΔALWC . These results suggest that the simulations that capture the observed distribution of ALWC are more 
likely to accurately predict TC intensity change, while those that are unable to reproduce the observed ALWC 
tend to fail in predicting TC intensity change.

The influence of radiative heating on the predictive skill shown here is consistent with previous predictability-related 
studies which suggested that strong large-scale influence can effectively enhance the predictability of TC intensity 

Figure 4. Storm-centered composites of azimuthal mean 𝐴𝐴 ΔALWC  relative to the average 𝐴𝐴 ΔALWC  of all selected storms 
for: (a) intensification rates in HWRF greater than BEST (𝐴𝐴 Δ𝑉𝑉𝑡𝑡 > 0), and (b) intensification rates in HWRF less than 
BEST (𝐴𝐴 Δ𝑉𝑉𝑡𝑡 < 0). The x-axis is radius to the TC center in km, and the y-axis is the initial ALWC error relative to the 
average in Wm −2. Different line colors represent different magnitudes of 𝐴𝐴 Δ𝑉𝑉𝑡𝑡  in each panel. In (a), PosS (blue) represents 
0 kt < ΔVt ≤ 10 kt, PosM (orange) represents 10 kt < ΔVt  ≤ 20 kt, and PosL (green) represents 20 kt < ΔVt ≤ 30 kt. In (b), 
NegS (blue) represents 0 kt > ΔVt ≥ −10 kt, NegM (orange) represents −10 kt > ΔVt ≥ −20 kt, and NegL (green) represents 
−20 kt < ΔVt ≥ −30 kt. Error bars represent standard error.
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(Finocchio & Majumdar, 2017; Zhang & Tao, 2013). The results shown above suggest that the performance of 
predicting TC intensity in HWRF may substantially depend on the model's ability to accurately simulate the 
observed ALWC.

4. Summary
This study explores how the model's ability to replicate the observed distribution of radiative heating affects the 
prediction of TC intensification in an operational hurricane forecasting model, HWRF. The contrast of radiative 
heating between the TC area and the environment has been shown to be a key factor in promoting the develop-
ment of TCs. In both HWRF simulations and CERES measurements, intensifying TCs on average have stronger 
atmospheric longwave radiation (ALWC) than weakening TCs within the TC area, while in the environment, their 
ALWC difference varies from negative to small positive values. Furthermore, both CERES measurements and 
HWRF simulations demonstrate that TCs with stronger ALWC tends to show a larger subsequent increase in TC 
intensity, and the HWRF also captures the ALWC gradient shown in rapidly intensifying TCs.

We further show that storms tend to have a better forecast of their subsequent 24-hr intensification change when 
the model better captures a spatial distribution of longwave heating. HWRF simulations that correctly predict 
24-hr intensification change can reproduce the observed signal of TC intensification in ALWC, that is, stronger 
inner core ALWC for TCs that correctly intensify, while those that fail to capture 24-hr intensity change demon-
strate the opposite relationship.  In addition, simulations with better performance in predicting 24-hr intensity 
change produce smaller errors in ALWC, compared to those with mediocre performance. Failure to capture the 
timing of RI or false prediction of RI results in larger ALWC errors. The increase in intensity forecasting error 
along with greater error in radiative heating highlights the importance of correctly simulating radiative heating 
to TC predictions in numerical models.

In conclusion, this study demonstrates the close relationship between the numerical model prediction of TC 
intensification and the model's ability to replicate the ALWC in HWRF. The results suggested that ALWC could 
be used as guidance for the accuracy of intensification forecasts. If the model ALWC pattern at the initiali-
zation time matches that in observations, then a forecaster may have higher confidence in that HWRF fore-
cast. It is also consistent with recent modeling studies which assimilated all-sky radiance from microwave 
satellite measurements to improve the performance of model simulations (Minamide & Zhang, 2018; Zhang, 
Gopalakrishnan, 2016; Zhang, Minamide et al., 2016; Zhang, Sieron, et al., 2021; Zhang, Soden, et al., 2021). 
Overall, this study supports previous modeling and observational studies which suggested that radiative heating 
plays a critical role in bolstering TC intensification. More analyses are required to explore the possible physical 
pathway for radiative heating to modulate TC development and assess the potential utility of observational radi-
ative fluxes in hurricane prediction.

Data Availability Statement
CERES data were downloaded directly from CERES Data Product on NOAA website (https://ceres.larc.
nasa.gov/data/). IBTrACS can be downloaded from the NOAA website (https://doi.org/10.25921/82ty-9e16) 
The HWRF-B forecast data used in this study can be downloaded from the University of Miami Library 
(https://doi.org/10.17604/2h87-n675).
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